The generator matrix 1 0 0 1 1 1 2 1 1 2 1 1 0 X^2 1 1 1 1 X^2+X+2 X X+2 1 1 1 1 X X^2+X+2 X^2 2 1 X^2+X+2 1 1 1 1 1 X^2+2 1 1 X^2+X 1 1 1 1 1 1 X^2+2 0 X X X^2 X 1 X^2+X 0 1 0 2 X^2+1 X^2+3 1 0 X^2+1 1 2 X^2+3 1 X X+2 X X^2+X+3 X^2+X+1 X^2+2 1 1 X+3 X^2+X+2 X+1 X^2+X X^2+X 1 X^2 1 0 1 X+1 X^2+X+3 1 3 X^2+2 1 X^2 X 1 X^2+3 X^2+1 X^2+X+3 1 X^2+X+3 X^2+X+2 X^2+X+2 X^2 X+2 1 0 X^2 X^2+X+3 1 0 0 1 X+3 X+1 2 X^2+X+1 X^2+X X^2+1 3 X^2+3 X^2+X+2 X^2+X+2 1 X+2 X^2+3 X+1 X 1 X^2+X+1 X 2 X+3 1 X^2 1 X+1 1 X+3 X^2+X+3 X^2+2 X^2+X+1 2 X^2+2 X^2+1 X^2+X+3 3 X^2+2 X+1 3 1 X^2+X+1 1 0 X^2+X 0 1 1 1 X^2+X+2 1 1 X^2+1 X+2 generates a code of length 54 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 51. Homogenous weight enumerator: w(x)=1x^0+616x^51+731x^52+644x^53+662x^54+418x^55+328x^56+302x^57+174x^58+106x^59+18x^60+86x^61+4x^62+4x^63+1x^64+1x^68 The gray image is a code over GF(2) with n=432, k=12 and d=204. This code was found by Heurico 1.16 in 139 seconds.